Tungsten Coating Ammunition
- No Comments
Guide to Bullet Coating
Coating Bullets with Tungsten Disulfide
For fans of coated bullets, here is a step-by-step bullet-coating guide. This article explains how to apply dry lubricants to jacketed bullets using two methods. In Part I of this article, Kevin Osborne shows how to coat bullets with a vibratory tumbler.
There are other ways to coat bullets, but both these methods work. The first method is ideal for shooters on a tight budget. Most shooters already own a vibratory tumbler, and the small containers can be obtained for little or no money.
Tungsten
Tungsten Disulfide is also known as “WS2”, or “Danzac”. (Danzac was a trade name for a Tungsten Disulfide-based product; Danzac is no longer produced, but many people still use this term.) Tungsten Disulfide seems to possess most of the benefits of Moly, but with a higher temp rating. Some people feel WS2 is easier to remove from a barrel than Moly because it does not build up as thickly. Both Moly and WS2 contain sulfur, which can cause corrosion if free sulfides combine with moisture.
To Coat or Not to Coat?
Should you coat your bullets at all? That remains a hotly debated question. We won’t attempt to answer that here. Many shooters, particularly varminters and High Power shooters, believe that application of WS2 helps their shooting. High Power shooters are required to shoot long strings of fire with no opportunity to clean. Varminters typically fire a lot of rounds at very high velocities. If coated bullets can reduce copper and powder fouling, that allows a varminter to spend more time hunting and less time cleaning. Some other shooters coat their bullets because they believe this reduces friction and heat in the barrel, which should extend barrel life.
If coating bullets with dry lubricants can reduce friction/heat, extend cleaning intervals and, possibly, make barrels last longer, then why doesn’t everyone shoot coated bullets?
Well, there is no free lunch. By reducing friction, bullet coating has the effect of reducing pressures in your barrel. This means that you’ll get less velocity with coated bullets than naked bullets, given the same powder load. Anti-friction coatings are Speed Robbers. You can expect to lose 20-80 fps after coating your bullets, maybe more with large cartridges and bullets with long bearing surfaces. In order to get back to the velocity you had before coating your bullets, you’ll need to adjust the powder load upwards–perhaps a half-grain or more. That’s not a problem … IF you have extra capacity in your case. If you’ve already maxed out your case capacity, you may need to change powders, or just accept the slower velocity as the “price” of coating your bullets.
WARNING!! Do NOT automatically increase your powder charge after coating your bullets. As with all reloading, start with a KNOWN SAFE MODERATE LOAD for naked (un-coated) bullets of the same type/weight and work up in small increments, checking for pressure.
Coating Bullets with Tungsten WS2
by Kevin Osborne
In this section, I’ll show how I coat my bullets with Tungsten Disulfide (WS2). Step by step, you’ll see a batch of 34gr, 20-caliber Dogtown bullets being coated, start to finish. Here they are fresh out of the box:
STEP ONE: Organize Gear and Components
I use a standard, inexpensive vibratory tumbler. My unit is a Frankford
Arsenal Quick-N-EZ. I use two sizes of pill bottles. The shorter bottles
will hold one hundred 20-caliber bullets and the larger will
accommodate 200 bullets. NOTE: These quantities are for small,
20-caliber bullets. The capacity would be less for larger calibers.
STEP TWO: Add Pellets
You need some metal pellets to impact-plate the dry lubricant on to your
bullets. For burnishing media I use standard .177 BBs. Any brand will
work (but see comment below). With the small bottles I put 3/8″ worth of
BBs in the base of the bottle. The larger bottles get a 1/2″ layer.
Uniform steel balls probably work best. Consider also that steel shot
can be separated from the bullets with a large magnet.
STEP THREE: Add Dry Lube Powder
After adding bullets and BBs, drop in the Tungsten WS2. NOTE: With fresh
burnishing media (BBs) you need to put in extra WS2 because you will be
coating the BBs as well as the bullets! Just dump it on top of the
bullets, close the bottle, give it a few shakes by hand for good luck,
then drop it in the tumbler.
STEP FOUR: Tumble Containers
You will want to tumble your bullets for at least 30 minutes. To verify
if your bottles are rotating (like the drum in a clothes dryer), leave
the tops of the pill bottles exposed in the bowl so you can see them
spin. NOTE: Some folks will tumble their brass at the same time. I have
gone away from tumbling brass while coating bullets as I think it was
interfering with the rotation of the bottles. [Editor’s NOTE: Some
shooters like to tumble for as long as 3 hours. The correct time will
depend on your tumbler and the type of bullets.
STEP FIVE: Inspect Your Bullets
Pull one coated bullet from your tumble bottle and polish the bullet by
hand. If it is coated to your liking, you can polish the rest of them.
If the sample is not coated evenly, switch on the machine and tumble the
bullets some more.
STEP SIX: Move to Polish Container and Shake
I use a RubberMaid-style container for the first polish. This will be
bigger than your tumbling bottle. Line the container with paper towels
and fill with bullets from your tumbling bottle. To cut down on the mess
and to not waste WS2, I pull them from the bottles with a pair of
tweezers. This keeps your hands clean. If you have access to a paper
shredder, shred some newspaper and put it in with the bullets. If you
don’t have a shredder, just use the paper towel. Put the lid on and
shake the bullets for about 30 seconds.
At this point you could call it good, but you will end up with black hands after reloading. (This is not a problem if you use gloves).
STEP SEVEN: Final Polish
I like to give the bullets one final, manual polish. You will need to
get an FPD (Final Polish Device). I simply put the coated bullets in the
sock and shake for another 30 seconds or so.
The Final Result–Coated Bullets
The entire process of bullet coating with WS2 can be accomplished in an
hour or less. It can take more time if you clean your bullets. To date
the only bullets I have cleaned were some old tarnished hollow points
for my 264 Magnum. All new bullets I do go right in from the box.
However, I know other shooters prefer to clean their bullets first.
History of Tungsten
- No Comments
Tungsten, also known as wolfram, enjoys a unique position among metals. It has the highest melting point, 3410 C. (6170 F.), of any metal. Its corrosion resistance is also one of the highest. When properly worked it is elastic and ductile, and tensils of up to 600,000 pounds per square inch can be obtained.
The word tungsten is derived from the Swedish words tung and sten, which mean “heavy stone.” It was first used about 1758 by A. F. Cronstedt, who applied the term to the mineral scheelite because of its high density.
The origin of the word wolfram is more obscure. Lazarus Ercker described “wolfram” as early as 1574, but undoubtedly it was known long before that time. Georgius Agricola suggested that it stems from the early German word wolf and ram or rahm (froth), which mean literally “the foam of the wolf” and suggest that in some manner the ore has wolfike qualities. These qualities were connected by tin miners in England with the tendency of wolframite–frequently associated with tin ore but originally believed to be a mineral of tin–to “eat up” tin during the process of the smelting. It was not realized at the time that this detrimental impurity contained a new element.
In 1781 a Swedish chemist, C-irl Scheele, pointed out that in tungsten ore (scheelite) there existed a peculiar acid, which he called tungstic acid, combined with lime. In recognition of his discovery the mineral now bears his name: scheelite. Torbern Bergman thought the base of the acid was a metal but was not able to isolate it. However, he as well as Scheele, suggested the possibility of extracting the element in a manner similar to that used in the recovery of arsenic from its oxide ores known centuries before, that is, with carbonaceous material.
J. J. & F. de Elhuyar found the same acid in wolframite and gave the first published account of isolating the metal in 1783. Their experimental procedure consisted merely of mixing tungstic acid and charcoal in a crucible and heating to bring about inter action between the two. The residue was a crumbly metallic button which upon close examination revealed small globules of elemental metal which they called wolfram. The English called it tungsten. ( Scheele probably had already prepared the metal but made no accounting of it.) Thede Elhuy,u brothers had further shown that in wolfram the metallic element was associated with iron and manganese instead of lime.
The first important use of tungsten commercially was in a tungsten-manganese steel which hardened upon air cooling from proper heat-treating temperatures. This steel was devised by Mushet in the middle of the 19th century. Several other European investigators experimented with steels containing tungsten.
The most notable achievement in the field of tungsten steels was made by Taylor and White, who developed the composition known today as high-speed steel. Their work was received with great enthusiasm when the first high-speed steel was exhibited by the Bethlehem Steel Company at the Paris Exposition in 1900. Its ability to hold a cutting edge at dull red heat promised to revolutionize the tool-steel industry. Many investigations were subsequently carried out with other compositions and the possibility of substituted elements was later considered when tungsten became a critical alloying element. At present, standard grades of high-speed steels include the use of tungsten, molybdenum, chromium, vanadium, and cobalt.
One of the more important applications of tungsten, because it contributes to man’s comfort, is in the field of electric lamp filaments for lighting and for electronic tubes. Tonnage wise, the actual amount thus used is small–1 ton is enough to make over 10 million electric lamps. Progress in this field was slow for the first few years because of the difficulty of producing from tungsten metal powder a solid material posses sing good ductility. Just and Hanaman in 1904-06 had some success in making filaments with a process of “squirting” into thread a mixture of fine tungsten powder and organic binder through appropriate-sized dies, and then volatilizing the binder in hydrogen to prevent oxidation. Tungsten particles were thus sintered to form a conducting filament suitable for lamps. However. its lack of flexibility was a serious drawback.
The difficulty was overcome by Coolidge (General Electric Company) who. after several years of research. produced fine flexible wire by the application of high initial temperatures and judicious use of mechanical deformation in the initial stages of fabrication. Once deformation had occurred. subsequent mechanical working below the re-crystallization temperature permitted the material to be drawn into very fine wire even at room temperature. Coolidge’s efforts had produced fine wire of commercial importance by 1906 and by 1911 incandescent lamps using coiled filaments were on the market. Filaments as fine as .0004 inches in diameter are now commercially available.
Tungsten carbide. recognized. Mois san in 1896, was first made by reducing tungstic oxide with carbon. About 1919. tools and die materials were made from the carbides. 1n the twenties tungsten car bide was bonded with cobalt at the Krupp Laboratory at Essen. Germany. and used for tools, etc. Cobalt is almost invariably the bonding material used for cementing carbides for use as cut ting tools and dies. The carbides of titanium and tantalum are often mixed to produce cemented tungsten carbide for use in cutting operations. These products of powder metallurgy involve the pressing of various metallic powders into desired shapes and sintering at high temperatures.
Tungsten carbide is also cast into desired shapes for other applications. It is being used as a substitute for diamonds in drills for drilling oil wells. For this application it is necessary that the drill be extremely abrasion resistant in order to maintain the gage of the drill hole.
The use of tungsten carbide products is rapidly expanding, and new uses are constantly developing. There are wide applications in the field of mining. such as for rock drill bits and oil-well drilling tool; in metal cutting tools; in dies for wire drawing; and in metal forming such as for facing rolls for producing certain sheet metals. Tungsten carbide is also used for hard facing materials where it may be deposited by means of arc welding. During World War II. the Germans introduced armor-piercing projectiles made from tungsten carbide for use in tank warfare. This innovation has consequently placed greater demands upon the ballistic performance of armor plate,
Tungsten pigments. lakes. and mordants are used in the manufacture of printing inks, paints. enamels. waxes, rubber. and paper. Tungsten finds other uses in corrosion resistant alloys. targets in X-ray tubes, electrodes in atomic hydrogen or gas – shielded electric arc welding. electrodes for spark plugs. cross hairs for optical instruments. in glass-blowing equipment. and. in some instances, as electrodes for arc melting titanium metal, it is used in certain chemical applications such as discs and vessels. Tungstates are used in fluorescent lamps and optical glass. especially in aerial camera lenses to raise the refractive index.
The chief sources of tungsten are the ores. wolframite. Ferberite, huebnerite, and scheelite. The first three form a continuous series of naturally occurring iron-manganese tungstates with ferberite on the iron end and huebnerite on the manganese end. (See table VIII-5 for limiting compositions.) Compositions in between are the wolframites. Scheelite is a calcium tungstate. At the present time wolframite is the greatest world source of tungsten but domestically scheelite predominates. Scheelite is used principally in the manufacture of ferrotungsten and directly in tungsten steels, while the wolframite group is mostly used in the production of tungsten powder, However, in certain cases they can be interchanged. The. products made from tungsten ores can be grouped as: (1) Tungsten compounds. (Z) tungsten metal powder, including tungsten carbide, (3) metallic tungsten, and ( 4) ferrotungsten.
The total world reserves are estimated at 175 million units of tungstic oxide, W0 3 (equivalent to nearly 3 billion pounds of tungsten). Ash has the largest deposits, principally in Burma, Malaya, China, Japan, and Korea. China has the largest and richest deposits in the world. Lesser or poorer grade deposits are found in North America., South America. Europe. and Australia. With the recent closing of the door to Chinese tungsten. United States needs for tungsten have greatly stimulated domestic and other sources of production. Domestic tungsten ore production in this emergency period accounted for about one-third of the total U1lited States supply. 86 percent of which in 1952 came from California, Nevada and North Carolina.
Numerous methods of dressing and concentrating tungsten ores are used. depending upon the nature of the ores and the complexity of the auociated minerals. Some are primitive while others use the most modern flotation, magnetic-, or electrostatic separation techniques. Domestic scheelite, which is often fine grained, presents the problem of sliming as a result of too fine crushing. Chemical treatment is, therefore, often used in order to produce synthetic scheelite which is used in steel production or further processed into metal powder.
The military demands for tungsten in armor-piercing projectiles, its expanded use in tooling in war economy-, and its use in jet aircraft clarify it as a “war element.” Its price has strongly reflected war and preparedness programs since 1914. To conserve this strategic element during emergency, it has been necessary for the Government to institute controls over prices, distribution, and uses
Guaranteed prices for Government purchases of domestic ore have been incorporated into the control program. Almost the entire commercial development and growth of the tungsten industry has taken place since 1900. Variations in demand have made production and prices vary erratically, with conspicuous peaks in 1918, 19Z9, 1937, 1943, and 1953. Since World War I, China (except for World War II years 1943-45, when transportation routes were blocked) has maintained the lead as the world’s greatest ore producer followed by the United States and Burma. Bolivia and Portugal have contributed lesser amounts. For convenience, development and growth of the industry can be grouped into four periods: Early development through World War I; post-World War 1–the twenties and thirties; World War II; and the post-World War II period.
Why Not Teflon?
- No Comments
Why are products based on Teflon not the wisest choice for the environment?
Teflon, which is known chemically as polytetrafluoroethylene, or PTFE, is a plasticlike substance made up of a complex mixture of perfl uorinated chemicals (PFCs). Unlike known environmental villains such as DDT and PCBs, PFCs are not generally volatile – in other words, they do not become easily airborne and so tend not to migrate long distances. In addition, to produce a substance such as Teflon, these compounds are usually ‘locked’ into polymers – chains of molecules – so it was assumed that they couldn’t leak into the environment. Even if they did, it was assumed that they wouldn’t break down; and even if they did, it was assumed that they were biologically inert. All of these assumptions are being proved wrong.
Scientific data shows that PFCs fulfil every single criterion for persistent bioaccumulative toxins: that is they do not biodegrade, they accumulate in people, animals and the environment, and they have been shown in laboratory tests to be toxic to mammals. Although there are nearly 100 known PFCs, only two have been studied in any depth: perfluorooctane sulfonate (PFOS), a breakdown product of the stain-repellent Scotchguard (now withdrawn from sale), and perfluorooctanoic acid (PFOA), a breakdown product of Tefl on. Both have been found in the blood of nearly every human tested, as well as in animals in the Arctic and Atlantic oceans.
NanoSlick™ produces no products based on Teflon, all our products are formulated with Tungsten Disulfide WS2, which is 100% environmentally friendly! You would be surprise how many well-known lubricants are formulated with Teflon or commonly hidden under the PTFE name.
Even Dupont discontinued it’s own DuPont Teflon® Bearing Grease several years ago.
A toxic trail
Once in the environment, PFCs have been shown to accumulate in organs like the liver, gall bladder and thyroid gland. In primates, including humans, exposure to one of Teflon’s breakdown products, PFOA, has led to an underactive thyroid (hypothyroidism). A prolonged state of hypothyroidism is a risk for obesity, insulin resistance and thyroid cancer.
Laboratory studies also show that PFOA is toxic to at least nine types of cells that regulate immune function. Cells in the spleen and thymus – both critical to immune function – are particularly vulnerable, and humans exposed to PFOA show reduced immune function. Most recently, PFOA has been linked to raised cholesterol and triglyceride (blood fat) levels in factory workers, and in animals to potentially dangerous changes in the size and weight of several important organs such as the brain, liver and spleen. PFOA is also thought to be a hormone disrupter.
In 2005, the US Environmental Protection Agency classified PFOA as a ‘likely human carcinogen’ and asked industry to work towards eliminating PFOA and related chemicals from emissions and products by no later than 2015.
The quickest way to degrade Teflon is through high temperatures. Such is the paucity of research on how it degrades, however, that nobody is entirely sure what else might cause it to break down. Or even how it, and its constituents, get into the environment. Being ‘locked’ in a cookware coating is one thing, but being used on a fishing reel is another. Reel lube is not meant to stay in place for 20 years. With normal wear and tear and friction the lube will come off – even if the product contains glue-like tackifiers (which are also petrochemical-based irritants). Normal use of the reel in both freshwater and saltwater and the lube will begin to wash away into our oceans, lakes, and rivers or on to the land.
Maybe you think the reel lube is not much of an environmental priority, but it’s worth seeing the bigger picture of lubricant oils, which are widely used in manufacturing and mechanical maintenance. It is estimated that 40 per cent of all lubricants are released into the environment. Their ‘proper’ disposal usually includes either burning or being put into landfill, or recycled, each of which has its own environmental impact. Burning releases toxic soot into the air, which is a hazard when inhaled or when it lands on crops or in water supplies, and landfill runs the risk of toxic chemicals seeping into groundwater.
The Environment Agency and WRAP (Waste & Resources Action Programme) are currently running a consultation on the best ways to dispose of waste lubricant oil (though reel lube is not included in this consultation). This is primarily concerned with turning used lubricating oils into a cheaper alternative to virgin fossil fuels – lubricating oils are made from waste fuel, so returning them to fuel does complete a cycle of sorts, but it is also energy-intensive and polluting. Recycling is also problematic because of all the additives in lubricant oils.
So why its continued use?
The answer is simple, just look at some of the manufacturer Material
Safety Data Sheets. They state; “Not regarded as a health hazard under
current legislation.” , notice that does not state IT IS NOT regarded as
a health hazard, just that it isn’t under current legislation.